List of scientific works by Renato Umeton, Ph.D.
AI, Data Science, Machine Learning, Optimization, and Computer Science in Healthcare.
Year | ||
ChatGPT for digital pathology research M Omar, V Ullanat, M Loda, L Marchionni, R Umeton The Lancet Digital Health, 2024 | 2024 | |
GPT-4 in a cancer center—institute-wide deployment challenges and lessons learned R Umeton, A Kwok, R Maurya, D Leco, N Lenane, J Willcox, GA Abel, et al. NEJM AI 1 (4), AIcs2300191, 2024 | 4 | 2024 |
Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L) 1 Blockade in Non–Small-Cell Lung Cancer B Ricciuti, G Lamberti, SR Puchala, NR Mahadevan, JR Lin, JV Alessi, et al. Journal of Clinical Oncology, 23.00580, 2024 | 8 | 2024 |
Federated benchmarking of medical artificial intelligence with MedPerf A Karargyris, R Umeton, MJ Sheller, A Aristizabal, J George, A Wuest, et al. Nature Machine Intelligence 5, 799, 2023 | 59* | 2023 |
A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories D Placido, B Yuan, JX Hjaltelin, C Zheng, AD Haue, PJ Chmura, C Yuan, et al. Nature Medicine 29, 1113, 2023 | 96 | 2023 |
GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows S Pati, SP Thakur, İE Hamamcı, U Baid, B Baheti, M Bhalerao, O Güley, et al. Communications Engineering 2, 23, 2023 | 50 | 2023 |
Measuring Palliative Care Communication via Telehealth: A Pilot Study EC Tarbi, BN Durieux, JM Brain, A Kwok, R Umeton, S Samineni, et al. Journal of Pain and Symptom Management 66, E155, 2023 | 2 | 2023 |
Genomic and immunophenotypic landscape of acquired resistance to PD-(L) 1 blockade in non-small cell lung cancer B Ricciuti, G Lamberti, S Puchala, N Mahadevan, J Alessi, X Wang, Y Li, et al. Cancer Research 83 (7_Supplement), 6629-6629, 2023 | 2023 | |
PI‐RADS 3 score: A retrospective experience of clinically significant prostate cancer detection A Camacho, F Salah, CP Bay, J Waring, R Umeton, MS Hirsch, AP Cole, et al. BJUI Compass 4, 473, 2023 | 2 | 2023 |
Book - Machine Learning, Optimization, and Data Science: 8th International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected Papers, Part I G Nicosia, V Ojha, E La Malfa, G La Malfa, P Pardalos, G Di Fatta, et al. Book - Springer 13810 (http://dx.doi.org/10.1007/978-3-031-25599-1), 2023 | 1* | 2023 |
Book - Machine Learning, Optimization, and Data Science: 8th International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected Papers, Part II G Nicosia, V Ojha, E La Malfa, G La Malfa, P Pardalos, G Di Fatta, et al. Book - Springer 13811 (http://dx.doi.org/10.1007/978-3-031-25891-6), 2023 | 2023 | |
Spatially aware deep learning reveals tumor heterogeneity patterns that encode distinct kidney cancer states J Nyman, T Denize, Z Bakouny, C Labaki, BM Titchen, K Bi, SN Hari, et al. Cell Reports Medicine 4 (9), 2023 | 6 | 2023 |
PDF - Federated Learning Framework for NLP in Healthcare: Assessing Hospital Readmission Using Electronic Health Records S Nalawade, S Samineni, A Chowdhury, L Feng, R Umeton, M Rosenthal Bio-IT World (dx.doi.org/10.6084/m9.figshare.23269184.v2), 2023 | 2023 | |
Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study S Romano, C Romano, M Peconi, A Fiore, G Bellucci, E Morena, F Troili, et al. International Journal of Molecular Sciences 23 (20), 12440, 2022 | 4 | 2022 |
Multi-omics biomarkers aid prostate cancer prognostication Z Xu, M Omar, E Benedetti, J Rosenthal, R Umeton, J Krumsiek, et al. bioRxiv, 2022.09. 20.508244, 2022 | 1 | 2022 |
Book Chapter - A Review of Medical Federated Learning: Applications in Oncology and Cancer Research A Chowdhury, H Kassem, N Padoy, R Umeton, A Karargyris Book Chapter MICCAI - Springer 1 (dx.doi.org/10.6084/m9.figshare.21071200), 3-24, 2022 | 41* | 2022 |
GWAS Variants, Non-genetic Factors, and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis R Umeton, G Bellucci, R Bigi, R Mechelli, V Rinaldi, M Buscarinu, et al. EUROPEAN JOURNAL OF NEUROLOGY 29, 456-457, 2022 | 2022 | |
Association of High Tumor Mutation Burden in Non–Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 … B Ricciuti, X Wang, JV Alessi, H Rizvi, NR Mahadevan, YY Li, A Polio, et al. JAMA Oncology, doi:10.1001/jamaoncol.2022.1981, 2022 | 172 | 2022 |
A multi-omics signature for patients’ risk classification in prostate cancer Z Xu, E Benedetti, R Carelli, J Rosenthal, H Pakula, M Omar, R Umeton, et al. Cancer Research 82 (12), 5858, 2022 | 2022 | |
Associations between family member involvement and outcomes of patients admitted to the intensive care unit: retrospective cohort study TF Gray, A Kwok, KM Do, S Zeng, ET Moseley, YM Dbeis, R Umeton, et al. JMIR Medical Informatics 10 (6), e33921, 2022 | 1 | 2022 |
Using attention-based deep multiple instance learning to identify key genetic alterations in prostate cancer from whole slide images M Omar, Z Xu, R Carelli, J Rosenthal, D Brundage, DC Salles, EL Imada, et al. Cancer Research 82 (12), 462, 2022 | 2022 | |
AI predicts risk of pancreatic cancer from disease trajectories using real-world electronic health records (EHRs) from Denmark and the USA D Placido, B Yuan, JX Hjaltelin, AD Haue, PJ Chmura, C Yuan, J Kim, et al. Cancer Research 82 (12), LB550, 2022 | 2022 | |
Deep learning for cancer symptoms monitoring on the basis of electronic health record unstructured clinical notes C Lindvall, CY Deng, ND Agaronnik, A Kwok, S Samineni, R Umeton, et al. JCO Clinical Cancer Informatics 6, e2100136, 2022 | 17 | 2022 |
Multiple sclerosis genetic and non-genetic factors interact through the transient transcriptome R Umeton, G Bellucci, R Bigi, S Romano, MC Buscarinu, R Reniè, et al. Scientific reports 12 (1), 7536, 2022 | 7 | 2022 |
Circulating U13 small nucleolar RNA as a candidate biomarker for Huntington’s disease S Romano, C Romano, M Peconi, A Fiore, G Bellucci, E Morena, F Troili, et al. bioRxiv, 2022.04. 22.489178, 2022 | 2022 | |
Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML toolkit for computational pathology J Rosenthal, R Carelli, M Omar, D Brundage, E Halbert, J Nyman, SN Hari, et al. Molecular Cancer Research 21 (655), 2022 | 32 | 2022 |
Machine Learning, Optimization, and Data Science: Part II G Nicosia, V Ojha, EL Malfa, GL Malfa, G Jansen, P Pardalos, G Giuffrida, et al. Lecture Notes in Computer Science, 2022 | 2022 | |
Book - Machine Learning, Optimization, and Data Science: 7th International Conference, LOD 2021, Grasmere, UK, October 4-8, 2021, Revised Selected Papers, Part I G Nicosia, V Ojha, E La Malfa, G La Malfa, G Jansen, PM Pardalos, et al. Book - Springer 13163 (http://doi.org/10.1007/978-3-030-95467-3), 1-644, 2022 | 2022 | |
Book - Machine Learning, Optimization, and Data Science: 7th International Conference, LOD 2021, Grasmere, UK, October 4-8, 2021, Revised Selected Papers, Part II G Nicosia, V Ojha, E La Malfa, G La Malfa, G Jansen, PM Pardalos, et al. Book - Springer 13164 (http://doi.org/10.1007/978-3-030-95470-3), 1-548, 2022 | 2022 | |
Identification and Management of Pathogenic Variants in BRCA1, BRCA2, and PALB2 in a Tumor-Only Genomic Testing Program BL Bychkovsky, T Li, J Sotelo, N Tayob, J Mercado, I Gomy, A Chittenden, et al. Clinical cancer research: an official journal of the American Association …, 2022 | 9 | 2022 |
Whole Slide Image to DICOM Conversion as Event-Driven Cloud Infrastructure D Brundage, J Rosenthal, R Carelli, S Rand, R Umeton, M Loda, et al. arXiv preprint arXiv:2203.13888, 2022 | 2022 | |
Examining Batch Effect in Histopathology as a Distributionally Robust Optimization Problem SN Hari, J Nyman, N Mehta, H Elmarakeby, B Jiang, F Dietlein, et al. bioRxiv, 2021.09. 14.460365, 2021 | 1 | 2021 |
Applying Self-Supervised Learning to Medicine: Review of the State of the Art and Medical Implementations A Chowdhury, J Rosenthal, J Waring, R Umeton Informatics 8 (3, Machine Learning in Healthcare), 59, 2021 | 62 | 2021 |
Pancreatic cancer risk predicted from disease trajectories using deep learning D Placido, B Yuan, JX Hu, AD Haue, C Yuan, J Kim, R Umeton, G Antell, et al. bioRxiv, 2021 | 13 | 2021 |
Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum KL Penney, S Tyekucheva, J Rosenthal, H El Fandy, R Carelli, et al. Molecular Cancer Research [machine learning; metabolomics; prostate cancer …, 2021 | 30 | 2021 |
Enrichment analysis of GWAS data in autoimmunity delineates the multiple sclerosis-Epstein Barr virus association R Mechelli, R Umeton, V Rinaldi, G Bellucci, R Bigi, DF Angelini, et al. BioRxiv, 2021.06. 06.447253, 2021 | 2021 | |
Identification and management of pathogenic mutations in BRCA1, BRCA2, and PALB2 in a tumor-only genomic testing program. BL Bychkovsky, T Li, J Sotelo, N Tayob, J Mercado, I Gomy, et al. Journal of Clinical Oncology 39 (15_suppl), 10528-10528, 2021 | 1 | 2021 |
Let us know how access to this document benefits you. R Umeton | 2021 | |
GWAS-associated Variants, Non-genetic Factors and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis R Umeton, G Bellucci, R Bigi, S Romano, MC Buscarinu, R Reniè, et al. bioRxiv, 2021.03. 12.434773, 2021 | 2021 | |
Book - Machine Learning, Optimization, and Data Science (6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020, Revised Selected Papers, Part I) G Nicosia, V Ojha, L Malfa E., G Jansen, V Sciacca, P Pardalos, et al. Book - Springer 12565 (http://doi.org/10.1007/978-3-030-64583-0), 1-740, 2021 | 2* | 2021 |
Book - Machine Learning, Optimization, and Data Science (6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020, Revised Selected Papers, Part II) G Nicosia, V Ojha, L Malfa E., G Jansen, V Sciacca, P Pardalos, et al. Book - Springer 12566 (http://doi.org/10.1007/978-3-030-64580-9), 1-666, 2021 | 2021 | |
Triple-negative breast cancer M Huang, J O'Shaughnessy, J Zhao, A Haiderali, J Cortés, SD Ramsey, et al. | 4 | 2021 |
Using Distributionally Robust Optimization to improve robustness in cancer pathology SN Hari, E Van Allen, J Nyman, N Mehta, B Jiang, H Elmarakeby, et al. NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and …, 2021 | 2021 | |
Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML toolkit for computational pathology J Rosenthal, R Carelli, M Omar, D Brundage, E Halbert, J Nyman, SN Hari, et al. biorxiv, 10.1101/2021.10.21.46521, 2021 | 2021 | |
GWAS-associated variants, non-genetic factors, and transient transcriptome in multiple sclerosis etiopathogenesis: A colocalization analysis G Bellucci, R Umeton, R Bigi, S Romano, MC Buscarinu, R Reniè, et al. Journal of the Neurological Sciences 429, 2021 | 2021 | |
Associations Between Family Member Involvement and Outcomes of Patients Admitted to the Intensive Care Unit: Retrospective Cohort Study T Fowler Gray, A Kwok, KM Do, S Zeng, ET Moseley, YM Dbeis, et al. Journal of Medical Internet Research, 33921, 2021 | 2021 | |
A very high tumor mutational burden (TMB) is associated with improved efficacy of PD-(L) 1 inhibition across different PD-L1 expression subgroups and a distinct immunophenotype … B Ricciuti, KC Arbour, NR Mahadevan, JV Alessi, J Lindsay, R Umeton, et al. Cancer Research 81 (13), 490, 2021 | 2021 | |
Circulating hsa-miR-323b-3p in Huntington's Disease: A Pilot Study M Ferraldeschi, S Romano, S Giglio, C Romano, E Morena, R Mechelli, et al. Frontiers in neurology 12, 492, 2021 | 11 | 2021 |
Book - Machine Learning, Optimization, and Data Science (5th International Conference, LOD 2019, Siena, Italy, September 10–13, 2019, Proceedings) G Nicosia, P Pardalos, R Umeton, G Giuffrida, V Sciacca Book - Springer 11943 (http://doi.org/10.1007/978-3-030-37599-7), 1-772, 2020 | 2* | 2020 |
Automated Machine Learning: Review of the State-of-the-Art and Opportunities for Healthcare J Waring, C Lindvall, R Umeton Artificial Intelligence in Medicine, 101822, 2020 | 680 | 2020 |
246 Clinicopathologic and genomic correlates of tumor mutational burden and its impact on PD-(L) 1 inhibition efficacy in non-small cell lung cancer according to different PD … B Ricciuti, N Mahadevan, R Umeton, J Alessi, A Polio, N Vokes, et al. Journal for ImmunoTherapy of Cancer 8 (Suppl 3), 2020 | 1 | 2020 |
Clinical pan-cancer assessment of mismatch repair deficiency using tumor-only, targeted next-generation sequencing A Albayrak, AC Garrido-Castro, M Giannakis, R Umeton, MD Manam, et al. JCO Precision Oncology 4, 1084-1097, 2020 | 14 | 2020 |
Genomic correlates of PD-L1 expression are associated with response to immunotherapy in non-small cell lung cancer LF Spurr, G Lamberti, YY Li, B Ricciuti, G Recondo, R Umeton, LM Sholl, et al. Cancer Research 80 (16), 5668, 2020 | 2020 | |
Impact of DNA damage response and repair (DDR) gene mutations on efficacy of PD-(L) 1 immune checkpoint inhibition in non–small cell lung cancer B Ricciuti, G Recondo, LF Spurr, YY Li, G Lamberti, D Venkatraman, et al. Clinical cancer research 26 (15), 4135-4142, 2020 | 119 | 2020 |
Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-L1) expression in nonsquamous non-small-cell lung cancer G Lamberti, LF Spurr, Y Li, B Ricciuti, G Recondo, R Umeton, M Nishino, et al. Annals of Oncology 31 (6), 807-814, 2020 | 89 | 2020 |
Molecular Mechanisms of Acquired Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14–Mutant NSCLC G Recondo, M Bahcall, LF Spurr, J Che, B Ricciuti, GC Leonardi, YC Lo, et al. Clinical Cancer Research 26 (11), 2615, 2020 | 153 | 2020 |
Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer R Barroso-Sousa, TE Keenan, S Pernas, P Exman, E Jain, et al. Clinical Cancer Research 26 (11), 2565, 2020 | 148 | 2020 |
Reworking GWAS data to understand the role of nongenetic factors in MS etiopathogenesis R Mechelli, R Umeton, G Manfrè, S Romano, MC Buscarinu, V Rinaldi, et al. Genes 11 (1), 97, 2020 | 6 | 2020 |
Correction to: Machine Learning, Optimization, and Data Science G Nicosia, V Ojha, E La Malfa, G Jansen, V Sciacca, P Pardalos, et al. Machine Learning, Optimization, and Data Science: 6th International …, 2020 | 2020 | |
PDF - Operationalizing Artificial Intelligence: Lessons Learned at Dana-Farber Cancer Institute J Methot, G Antell, R Umeton American Medical Informatics Association 2020 (dx.doi.org/10.6084/m9 …, 2020 | 2020 | |
Machine Learning, Optimization, and Data Science G Nicosia, V Ojha, E La Malfa, G Jansen, V Sciacca, P Pardalos, et al. Springer Nature, 2020 | 2020 | |
Book - Machine Learning, Optimization, and Data Science (4th International Conference, LOD 2018, Volterra, Italy, September 13-16, 2018, Revised Selected Papers) G Nicosia, P Pardalos, G Giuffrida, R Umeton, V Sciacca Book - Springer 11331 (http://doi.org/10.1007/978-3-030-13709-0), 1-584, 2019 | 3* | 2019 |
Clinicopathological and genomic correlates of PD-L1 expression in nonsquamous non-small cell lung cancer G Lamberti, L Spurr, Y Li, B Ricciuti, G Recondo, R Umeton, A Cherniak, et al. Journal for Immunotherapy of Cancer 7, 2019 | 1 | 2019 |
Use of targeted next generation sequencing to characterize tumor mutational burden and efficacy of immune checkpoint inhibition in small cell lung cancer B Ricciuti, S Kravets, SE Dahlberg, R Umeton, A Albayrak, SJ Subegdjo, et al. Journal for ImmunoTherapy of Cancer 7 (1), 87, 2019 | 80 | 2019 |
Harmonization of tumor mutational burden quantification and association with response to immune checkpoint blockade in non–small-cell lung cancer NI Vokes, D Liu, B Ricciuti, E Jimenez-Aguilar, H Rizvi, F Dietlein, MX He, et al. JCO precision oncology 3, 1-12, 2019 | 105 | 2019 |
Comparison of Clinicopathological and Genomic Characteristics Between NSCLCs with a PD-L1 Tumor Proportion Score of≥ 90% vs< 1% G Lamberti, Y Li, L Spurr, B Ricciuti, G Recondo, R Umeton, L Sholl, et al. Journal of Thoracic Oncology 14 (10), S720, 2019 | 2 | 2019 |
Mechanisms of Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14 Mutant Non-Small Cell Lung Cancer G Recondo, M Bahcall, L Sholl, G Leonardi, B Ricciuti, T Nguyen, et al. Journal of Thoracic Oncology 14 (10), S285, 2019 | 4 | 2019 |
DNA Damage Response Gene Alterations Are Associated with High Tumor Mutational Burden and Clinical Benefit from PD-1 Axis Inhibition in NSCLC B Ricciuti, M Cheng, G Recondo, R Umeton, M Nishino, L Sholl, M Awad Journal of Thoracic Oncology 14 (10), S439, 2019 | 3 | 2019 |
Immune-Related Adverse Events and Clinical Outcome to Anti PD-1 Axis Inhibition in SCLC: A Multicenter Retrospective Analysis B Ricciuti, AR Naqash, B Henick, D Rangachari, J Naidoo, et al. Journal of Thoracic Oncology 14 (10), S213, 2019 | 3 | 2019 |
Tumor mutational burden (TMB) is a potential predictor of response to immune checkpoint inhibitors (ICI) in metastatic triple-negative breast cancer (mTNBC) R Barroso-Sousa, S Tyekucheva, P Exman, R Umeton, FS Hodi, EP Winer, et al. Mastology 29 (3), 5-5, 2019 | 2019 | |
Inter-test variability in tumor mutational burden (TMB) quantification and identification of TMB thresholds N Vokes, EJ Alguilar, R Umeton, A Adeni, L Sholl, M Hellmann, H Rizvi, et al. Cancer Research 79 (13), 2514, 2019 | 1 | 2019 |
Impact of KRAS allele subtypes and concurrent genomic alterations on clinical outcomes to programmed death 1 axis blockade in non-small cell lung cancer. B Ricciuti, G Recondo, R Umeton, M Nishino, LM Sholl, MM Awad Journal of Clinical Oncology 37, 9082, 2019 | 5 | 2019 |
DNA damage response gene alterations are associated with high tumor mutational burden and clinical benefit from programmed death 1 axis inhibition in non-small cell lung cancer. B Ricciuti, ML Cheng, G Recondo, M Nishino, R Umeton, LM Sholl, et al. Journal of Clinical Oncology 37, 9077, 2019 | 3 | 2019 |
Significant enrichment of Herpesvirus interactors in GWAS data suggests causal inferences for the association between Epstein Barr virus and multiple sclerosis R Mechelli, R Umeton, S Srinivasan, A Fornasiero, M Ferraldeschi, et al. bioRxiv, 624049, 2019 | 2019 | |
Mutational analysis of 472 urothelial carcinoma across grades and anatomic sites AH Nassar, R Umeton, J Kim, K Lundgren, L Harshman, EM Van Allen, et al. Clinical Cancer Research 25 (8), 2458, 2019 | 114 | 2019 |
PTEN alterations and tumor mutational burden as potential predictors of resistance or response to immune checkpoint inhibitors in metastatic triple-negative breast cancer R Barroso-Sousa, S Tyekucheva, S Pernas-Simon, P Exman, E Jain, et al. Cancer Research 79, P5, 2019 | 2* | 2019 |
Genome-Wide Multiple Sclerosis Association Data and Coagulation S La Starza, M Ferraldeschi, MC Buscarinu, S Romano, A Fornasiero, et al. Frontiers in Neurology 10, 95, 2019 | 10 | 2019 |
Book - Machine Learning, Optimization, and Big Data (Third International Conference, MOD 2017, Volterra, Italy, September 14–17, 2017, Revised Selected Papers) G Nicosia, P Pardalos, G Giuffrida, R Umeton Book - Springer 10710 (http://doi.org/10.1007/978-3-319-72926-8), 1-621, 2018 | 1* | 2018 |
Mismatch repair deficiency in high-grade meningioma: a rare but recurrent event associated with dramatic immune activation and clinical response to PD-1 blockade IF Dunn, Z Du, M Touat, MB Sisti, PY Wen, R Umeton, AM Dubuc, et al. JCO precision oncology 2, 1-12, 2018 | 52 | 2018 |
Use of Tumor-Only Next Generation Sequencing to Identify Clinicopathologic and Genomic Correlates of Tumor Mutational Burden and Immunotherapy Response in Non-Small Cell Lung … M Awad, NR Mahadevan, A Polio, EJ Aguilar, NI Vokes, B Ricciuti, et al. Preprints with The Lancet, 2018 | 2018 | |
Investigating the gene-environment interaction in multiple sclerosis through a" candidate-interactome" approach G Pellicciari, R Umeton, S Srinivasan, R Magliozzi, F Cinthia, C Romano, et al. MULTIPLE SCLEROSIS JOURNAL 24, 192-193, 2018 | 2018 | |
Multiple sclerosis: Epstein-Barr virus variants' role to understand the etiology E Morena, R Renie, C Romano, G Pellicciari, G Pesole, G Manfre, et al. MULTIPLE SCLEROSIS JOURNAL 24, 397-398, 2018 | 2018 | |
Efficacy and Genomic Correlates of Response to Anti-PD1/PD-L1 Blockade in Non-Small Cell Lung Cancers Harboring Targetable Oncogenes N Vokes, EJ Alguilar, A Adeni, R Umeton, L Sholl, H Rizvi, M Hellmann, et al. Journal of Thoracic Oncology 13 (10), S422, 2018 | 9 | 2018 |
PD-L1 Expression, Tumor Mutational Burden, and Response to Immunotherapy in Patients with MET exon 14 Altered Lung Cancers JK Sabari, GC Leonardi, CA Shu, R Umeton, J Montecalvo, A Ni, R Chen, et al. Annals of Oncology, 2018 | 270 | 2018 |
Comprehensive genomic characterization of urothelial carcinomas A Nassar, R Umeton, K Lundgren, LC Harshman, EM Van Allen, et al. Journal of Clinical Oncology 36 (15), 4527, 2018 | 2018 | |
Optimization and Data Science G Nicosia, P Pardalos, G Giuffrida, R Umeton, V Sciacca | 2018 | |
Fractal analysis of retinal vascular morphology in multiple sclerosis M Cavallari, D Kimbrough, C Stamile, R Umeton, T Chitnis, C Guttmann MULTIPLE SCLEROSIS JOURNAL 24, 370, 2018 | 1 | 2018 |
Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients V Annibali, R Umeton, A Palermo, M Severa, MP Etna, S Giglio, et al. Journal of NeuroImmunology 324, 165, 2018 | 11 | 2018 |
Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis MC Buscarinu, S Romano, R Mechelli, RP Umeton, M Ferraldeschi, et al. Neurotherapeutics, 1-7, 2018 | 73 | 2018 |
Somatic mutations in CDH1 and CTNNB1 in primary carcinomas at 13 anatomic sites EL Busch, JL Hornick, R Umeton, A Albayrak, NI Lindeman, et al. Oncotarget 8 (49), 85680, 2017 | 19 | 2017 |
Different environmental stimuli may activate common biological processes potentially involved in multiple sclerosis R Mechelli, R Umeton, R Renie, G Ristori, M Salvetti MULTIPLE SCLEROSIS JOURNAL 23, 210, 2017 | 2017 | |
The gut microbiome in active and stable relapsing multiple sclerosis E Eleftheriou, RP Umeton, R Umeton, S Nedelcu, AL Contreras, L Hall, et al. MULTIPLE SCLEROSIS JOURNAL 23, 518, 2017 | 2017 | |
A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials C Eleuteri, S Olla, C Veroni, R Umeton, R Mechelli, S Romano, et al. Scientific Reports 7, 45780, 2017 | 39 | 2017 |
Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: A pilot study MC Buscarinu, B Cerasoli, V Annibali, C Policano, L Lionetto, M Capi, et al. Multiple Sclerosis Journal 23 (3), 442-446, 2017 | 153 | 2017 |
Association of Rs7961894 with Mean Platelet Volume in Patients with Acute Ischemic Stroke M Miller, N Henninger, R Umeton, A Slowik Stroke 48, ATP202, 2017 | 2017 | |
Gene-environment interaction study in multiple sclerosis using a" candidate-interactome" approach R Mechelli, R Umeton, Imsgc-Wtccc, G Ristori, M Salvetti MULTIPLE SCLEROSIS JOURNAL 22, 191-192, 2016 | 2016 | |
GENE-ENVIRONMENT INTERACTION STUDY IN MULTIPLE SCLEROSIS R Mechelli, R Umeton, I WTCCC22, G Ristori, M Salvetti | 2016 | |
Epstein barr virus genotipic variants and uses thereof as risk predictors, biomarkers and therapeutic targets in multiple sclerosis G Ristori, R Mechelli, M Salvetti, C Policano, R Umeton US Patent App. 14/782,556, 2016 | 2016 | |
Portable medical device and method for quantitative retinal image analysis through a smartphone C Stamile, R Umeton, M Cavallari, F Calimeri, F Orzi US Patent 20150320313A1, 2016 | 8 | 2016 |
IFN-β and multiple sclerosis: from etiology to therapy and back V Annibali, R Mechelli, S Romano, MC Buscarinu, A Fornasiero, et al. Cytokine & growth factor reviews 26 (2), 221-228, 2015 | 51 | 2015 |
Research Article Novel Method for Automated Analysis of Retinal Images: Results in Subjects with Hypertensive Retinopathy and CADASIL M Cavallari, C Stamile, R Umeton, F Calimeri, F Orzi | 2015 | |
Epstein-Barr virus genetic variants are associated with multiple sclerosis. R Mechelli, C Manzari, C Policano, A Annese, E Picardi, R Umeton, et al. Neurology 31 (84), 1362-8, 2015 | 72 | 2015 |
Novel method for automated analysis of retinal images: results in subjects with hypertensive retinopathy and CADASIL M Cavallari, C Stamile, R Umeton, F Calimeri, F Orzi BioMed research international 2015 (1), 752957, 2015 | 43 | 2015 |
B cell IRF1 pathway is dysregulated in multiple sclerosis V Annibali, R Umeton, A Palermo, MC Buscarinu, C Policano, R Mechelli, et al. Journal of Neuroimmunology 275 (1), 1, 2014 | 2014 | |
Noise in multiple sclerosis: unwanted and necessary I Bordi, VAG Ricigliano, R Umeton, G Ristori, F Grassi, A Crisanti, et al. Annals of clinical and translational neurology 1 (7), 502-511, 2014 | 11 | 2014 |
Dispositivo medico portatile e metodo per l’acqusizione di immagini della retina e esecuzione di analisi quantitative sull’immagi-ne della retina C Stamile, R Umeton, M Cavallari, F Calimeri, F Orzi | 2014 | |
Drug repositioning and computational analysis for myelin disease regenerative therapies C Eleuteri, C Veroni, M Floris, S Olla, R Umeton, G Ristori, V Annibali, et al. MULTIPLE SCLEROSIS JOURNAL 19 (11), 163-163, 2013 | 2013 | |
Contribution of genome-wide association studies to scientific research: a pragmatic approach to evaluate their impact VAG Ricigliano, R Umeton, L Germinario, E Alma, M Briani, N Di Segni, et al. PLoS One 8 (8), e71198, 2013 | 9 | 2013 |
In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology A Koo, D Nordsletten, R Umeton, et al. Biophysical journal 104 (10), 2295-2306, 2013 | 52 | 2013 |
Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis G Carapezza, R Umeton, J Costanza, C Angione, G Stracquadanio, et al. ACS synthetic biology 2 (5), 274-288, 2013 | 13 | 2013 |
A “candidate-interactome” aggregate analysis of genome-wide association data in multiple sclerosis R Mechelli, R Umeton, C Policano, V Annibali, G Coarelli, VAG Ricigliano, et al. PLoS One 8 (5), e63300, 2013 | 36 | 2013 |
Automated analysis of retinal photographs: results in subjects with hypertensive retinopathy and CADASIL M Cavallari, C Stamile, R Umeton, F Orzi NEUROLOGY 80, 2013 | 1 | 2013 |
Automated Analysis of Retinal Photographs: Results in Subjects with Hypertensive Retinopathy and CADASIL (IN4-1.001) M Cavallari, C Stamile, R Umeton, F Orzi Neurology 80 (7_supplement), IN4-1.001-IN4-1.001, 2013 | 2013 | |
Research Article A Mechanistic, Stochastic Model Helps Understand Multiple Sclerosis Course and Pathogenesis I Bordi, R Umeton, VAG Ricigliano, V Annibali, R Mechelli, G Ristori, et al. | 2013 | |
Varianti genotipiche del virus di Epstein Barr e loro usi come possibili predittori di rischio, biomarcatori e target terapeutici nella sclerosi multipla R Mechelli, C Policano, R Umeton, M Salvetti, G Ristori ITA, 2013 | 2013 | |
A ‘‘Candidate-Interactome’’Aggregate Analysis of Genome-Wide Association Data R Mechelli, R Umeton, C Policano, V Annibali, G Coarelli | 2013 | |
A mechanistic, stochastic model helps understand multiple sclerosis course and pathogenesis I Bordi, R Umeton, VAG Ricigliano, V Annibali, R Mechelli, G Ristori, et al. International Journal of Genomics 2013 (1), 910321, 2013 | 31 | 2013 |
OREMPdb: a semantic dictionary of computational pathway models R Umeton, G Nicosia, CF Dewey BMC bioinformatics 13, 1-9, 2012 | 8 | 2012 |
Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood R Calabrese, M Zampieri, R Mechelli, V Annibali, T Guastafierro, et al. Multiple Sclerosis Journal 18 (3), 299-304, 2012 | 87 | 2012 |
Characterization of Epstein-Barr virus genotypes in multiple sclerosis by 454 deep sequencing C Manzari, E Picardi, R Mechelli, C Policano, R Umeton, A Paluscio, et al. 2012 Human Microbiome International Conference–Paris, France, March 19-21 2012, 2012 | 2012 | |
Characterization of Epstein-Barr virus genotypes in multiple sclerosis C Policano, R Mechelli, C Manzari, E Picardi, V Annibali, R Umeton, et al. -, 2012 | 2012 | |
metaDesign: Bacterial Strain Design Automation Software C Jole, C Giovanni, A Claudio, U Renato, L Pietro, G Nicosia IWBDA 2012, 2012 | 2012 | |
Efficient Behavior of Photosynthetic Organelles via Pareto Optimality, Identifiability and Sensitivity Analysis-Appendix Supplementary Information G Carapezza, R Umeton, J Costanza, C Angione, G Stracquadanio, et al. | 2012 | |
Modeling and Optimization of Efficient Photosynthetic Organelles-Appendix Supplementary Information G Carapezza, R Umeton, J Costanza, C Angione, G Stracquadanio, et al. | 2012 | |
New enhancers of endogenous remyelination: an extensive in vitro and ex vivo screening C Eleuteri, C Veroni, R Umeton, V Annibali, G Ristori, M Salvetti, C Agresti MULTIPLE SCLEROSIS, 2012 | 2 | 2012 |
Transciptome of B lymphocytes in multiple sclerosis V Annibali, R Umeton, A Annese, A Palermo, R Mechelli, C Policano, et al. JOURNAL OF NEUROIMMUNOLOGY 253, 9-9, 2012 | 2012 | |
Identification of sensitive enzymes in the photosynthetic carbon metabolism R Umeton, G Stracquadanio, A Papini, J Costanza, P Lio, G Nicosia Advances in Systems Biology, 441-459, 2012 | 5 | 2012 |
Design of robust metabolic pathways R Umeton, G Stracquadanio, A Sorathiya, P Liò, A Papini, G Nicosia Proceedings of the Design Automation Conference, 747-752, 2011 | 17 | 2011 |
Design and implementation of a workflow-based system for the analysis of HumanExon and microRNA array chip data A Palermo, V Annibali, A Annese, G Ristori, M Salvetti, F Calimeri, et al. ICARIS, 2011 | 2011 | |
OREMPdb: a Semantic Dictionary of Runnable Biological Circuits R Umeton, G Nicosia, CF Dewey Jr BITS, 2011 | 2011 | |
Semantic Queries for Biomedical Pathways R Umeton, G Nicosia, CF Dewey Jr Workshop on Process Algebra and Stochastically Timed Activities (PASTA/Bio …, 2011 | 2011 | |
Multi-scale Mathematical Modeling to Support Drug Development DA Nordsletten, BY Yankama, R Umeton, et al. IEEE Transactions on Biomedical Engineering, 2011 | 16 | 2011 |
Large scale agent-based modeling of the humoral and cellular immune response G Stracquadanio, R Umeton, J Costanza, V Annibali, R Mechelli, et al. International Conference on Artificial Immune Systems (ICARIS 2011), 15-29, 2011 | 3 | 2011 |
Optimization and Ontology for Computational Systems Biology R Umeton | 2010 | |
Analysis and optimization of c3 photosynthetic carbon metabolism G Stracquadanio, R Umeton, A Papini, P Lio, G Nicosia IEEE International Conference on BioInformatics and BioEngineering, 44-51, 2010 | 21 | 2010 |
A Cross-Format Framework for Consistent Information Integration among Molecular Pathways and Ontologies R Umeton, B Yankama, G Nicosia, CF Dewey World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore, 1595-1598, 2010 | 3 | 2010 |
Key Enzymes for the optimization of CO2 uptake and nitrogen consumption in the C3 photosynthetic carbon metabolism A Papini, G Nicosia, G Stracquadanio, P Lio, R Umeton Journal of Biotechnology, 525, 2010 | 3 | 2010 |
OREMP: Ontology Reasoning Engine for Molecular Pathways R Umeton, B Yankama, G Nicosia, CF Dewey Jr International Workshop on Ontology Repositories and Editors for the Semantic …, 2010 | 2 | 2010 |
Visita Massachusetts Institute of Technology (MIT) R Umeton, M Salvetti USA, 2009 | 2009 | |
Highway traffic simulator based on cellular automata model: preliminary results and congestion pricing analysis S DI GREGORIO, R Umeton, A Bicocchi, A Evangelisti, MA Gonzales European Modeling and Simulation Symposium, EMSS 2008, 17-19 September 2008 …, 2008 | 1 | 2008 |
Highway traffic model based on cellular automata: Preliminary simulation results with congestion pricing considerations S Di Gregorio, R Umeton, A Bicocchi, A Evangelisti, MC Gonzalez European Modeling and Simulation Symposium, EMSS 2008, 17-19 September 2008 …, 2008 | 3 | 2008 |
A Cellular Automata Model for Highway Traffic with Preliminary Results S Di Gregorio, R Umeton, A Bicocchi, A Evangelisti Artificial Life and Evolutionary Computation: Proceedings of Wivace 2008, 235, 2008 | 1 | 2008 |
Admissible Method for Improved Genetic Search in Cellular Automata Model Hyperparameter Space (AMMISCA): a Strategy in Genetic Calibration with Preliminary Results R Umeton, S Di Gregorio Artificial Life and Evolutionary Computation: Proceedings of Wivace 2008, 99, 2008 | 1* | 2008 |
Introduction of More Physical Features in the Cellular Automata Model for Lava Flows SCIARA: Preliminary Results Regarding the Viscosity MV Avolio, GM Crisci, S Di Gregorio, R Rongo, R Umeton Geophysical Research Abstracts / Proceedings of Asia Oceania Geosciences …, 2007 | 1* | 2007 |