List of scientific works by Renato Umeton, Ph.D.

AI, Data Science, Machine Learning, Optimization, and Computer Science in Healthcare.

Year
ChatGPT for digital pathology research
M Omar, V Ullanat, M Loda, L Marchionni, R Umeton
The Lancet Digital Health, 2024
2024
GPT-4 in a cancer center—institute-wide deployment challenges and lessons learned
R Umeton, A Kwok, R Maurya, D Leco, N Lenane, J Willcox, GA Abel, et al.
NEJM AI 1 (4), AIcs2300191, 2024
42024
Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L) 1 Blockade in Non–Small-Cell Lung Cancer
B Ricciuti, G Lamberti, SR Puchala, NR Mahadevan, JR Lin, JV Alessi, et al.
Journal of Clinical Oncology, 23.00580, 2024
82024
Federated benchmarking of medical artificial intelligence with MedPerf
A Karargyris, R Umeton, MJ Sheller, A Aristizabal, J George, A Wuest, et al.
Nature Machine Intelligence 5, 799, 2023
59*2023
A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
D Placido, B Yuan, JX Hjaltelin, C Zheng, AD Haue, PJ Chmura, C Yuan, et al.
Nature Medicine 29, 1113, 2023
962023
GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows
S Pati, SP Thakur, İE Hamamcı, U Baid, B Baheti, M Bhalerao, O Güley, et al.
Communications Engineering 2, 23, 2023
502023
Measuring Palliative Care Communication via Telehealth: A Pilot Study
EC Tarbi, BN Durieux, JM Brain, A Kwok, R Umeton, S Samineni, et al.
Journal of Pain and Symptom Management 66, E155, 2023
22023
Genomic and immunophenotypic landscape of acquired resistance to PD-(L) 1 blockade in non-small cell lung cancer
B Ricciuti, G Lamberti, S Puchala, N Mahadevan, J Alessi, X Wang, Y Li, et al.
Cancer Research 83 (7_Supplement), 6629-6629, 2023
2023
PI‐RADS 3 score: A retrospective experience of clinically significant prostate cancer detection
A Camacho, F Salah, CP Bay, J Waring, R Umeton, MS Hirsch, AP Cole, et al.
BJUI Compass 4, 473, 2023
22023
Book - Machine Learning, Optimization, and Data Science: 8th International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected Papers, Part I
G Nicosia, V Ojha, E La Malfa, G La Malfa, P Pardalos, G Di Fatta, et al.
Book - Springer 13810 (http://dx.doi.org/10.1007/978-3-031-25599-1), 2023
1*2023
Book - Machine Learning, Optimization, and Data Science: 8th International Workshop, LOD 2022, Certosa di Pontignano, Italy, September 19–22, 2022, Revised Selected Papers, Part II
G Nicosia, V Ojha, E La Malfa, G La Malfa, P Pardalos, G Di Fatta, et al.
Book - Springer 13811 (http://dx.doi.org/10.1007/978-3-031-25891-6), 2023
2023
Spatially aware deep learning reveals tumor heterogeneity patterns that encode distinct kidney cancer states
J Nyman, T Denize, Z Bakouny, C Labaki, BM Titchen, K Bi, SN Hari, et al.
Cell Reports Medicine 4 (9), 2023
62023
PDF - Federated Learning Framework for NLP in Healthcare: Assessing Hospital Readmission Using Electronic Health Records
S Nalawade, S Samineni, A Chowdhury, L Feng, R Umeton, M Rosenthal
Bio-IT World (dx.doi.org/10.6084/m9.figshare.23269184.v2), 2023
2023
Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study
S Romano, C Romano, M Peconi, A Fiore, G Bellucci, E Morena, F Troili, et al.
International Journal of Molecular Sciences 23 (20), 12440, 2022
42022
Multi-omics biomarkers aid prostate cancer prognostication
Z Xu, M Omar, E Benedetti, J Rosenthal, R Umeton, J Krumsiek, et al.
bioRxiv, 2022.09. 20.508244, 2022
12022
Book Chapter - A Review of Medical Federated Learning: Applications in Oncology and Cancer Research
A Chowdhury, H Kassem, N Padoy, R Umeton, A Karargyris
Book Chapter MICCAI - Springer 1 (dx.doi.org/10.6084/m9.figshare.21071200), 3-24, 2022
41*2022
GWAS Variants, Non-genetic Factors, and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis
R Umeton, G Bellucci, R Bigi, R Mechelli, V Rinaldi, M Buscarinu, et al.
EUROPEAN JOURNAL OF NEUROLOGY 29, 456-457, 2022
2022
Association of High Tumor Mutation Burden in Non–Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 …
B Ricciuti, X Wang, JV Alessi, H Rizvi, NR Mahadevan, YY Li, A Polio, et al.
JAMA Oncology, doi:10.1001/jamaoncol.2022.1981, 2022
1722022
A multi-omics signature for patients’ risk classification in prostate cancer
Z Xu, E Benedetti, R Carelli, J Rosenthal, H Pakula, M Omar, R Umeton, et al.
Cancer Research 82 (12), 5858, 2022
2022
Associations between family member involvement and outcomes of patients admitted to the intensive care unit: retrospective cohort study
TF Gray, A Kwok, KM Do, S Zeng, ET Moseley, YM Dbeis, R Umeton, et al.
JMIR Medical Informatics 10 (6), e33921, 2022
12022
Using attention-based deep multiple instance learning to identify key genetic alterations in prostate cancer from whole slide images
M Omar, Z Xu, R Carelli, J Rosenthal, D Brundage, DC Salles, EL Imada, et al.
Cancer Research 82 (12), 462, 2022
2022
AI predicts risk of pancreatic cancer from disease trajectories using real-world electronic health records (EHRs) from Denmark and the USA
D Placido, B Yuan, JX Hjaltelin, AD Haue, PJ Chmura, C Yuan, J Kim, et al.
Cancer Research 82 (12), LB550, 2022
2022
Deep learning for cancer symptoms monitoring on the basis of electronic health record unstructured clinical notes
C Lindvall, CY Deng, ND Agaronnik, A Kwok, S Samineni, R Umeton, et al.
JCO Clinical Cancer Informatics 6, e2100136, 2022
172022
Multiple sclerosis genetic and non-genetic factors interact through the transient transcriptome
R Umeton, G Bellucci, R Bigi, S Romano, MC Buscarinu, R Reniè, et al.
Scientific reports 12 (1), 7536, 2022
72022
Circulating U13 small nucleolar RNA as a candidate biomarker for Huntington’s disease
S Romano, C Romano, M Peconi, A Fiore, G Bellucci, E Morena, F Troili, et al.
bioRxiv, 2022.04. 22.489178, 2022
2022
Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML toolkit for computational pathology
J Rosenthal, R Carelli, M Omar, D Brundage, E Halbert, J Nyman, SN Hari, et al.
Molecular Cancer Research 21 (655), 2022
322022
Machine Learning, Optimization, and Data Science: Part II
G Nicosia, V Ojha, EL Malfa, GL Malfa, G Jansen, P Pardalos, G Giuffrida, et al.
Lecture Notes in Computer Science, 2022
2022
Book - Machine Learning, Optimization, and Data Science: 7th International Conference, LOD 2021, Grasmere, UK, October 4-8, 2021, Revised Selected Papers, Part I
G Nicosia, V Ojha, E La Malfa, G La Malfa, G Jansen, PM Pardalos, et al.
Book - Springer 13163 (http://doi.org/10.1007/978-3-030-95467-3), 1-644, 2022
2022
Book - Machine Learning, Optimization, and Data Science: 7th International Conference, LOD 2021, Grasmere, UK, October 4-8, 2021, Revised Selected Papers, Part II
G Nicosia, V Ojha, E La Malfa, G La Malfa, G Jansen, PM Pardalos, et al.
Book - Springer 13164 (http://doi.org/10.1007/978-3-030-95470-3), 1-548, 2022
2022
Identification and Management of Pathogenic Variants in BRCA1, BRCA2, and PALB2 in a Tumor-Only Genomic Testing Program
BL Bychkovsky, T Li, J Sotelo, N Tayob, J Mercado, I Gomy, A Chittenden, et al.
Clinical cancer research: an official journal of the American Association …, 2022
92022
Whole Slide Image to DICOM Conversion as Event-Driven Cloud Infrastructure
D Brundage, J Rosenthal, R Carelli, S Rand, R Umeton, M Loda, et al.
arXiv preprint arXiv:2203.13888, 2022
2022
Examining Batch Effect in Histopathology as a Distributionally Robust Optimization Problem
SN Hari, J Nyman, N Mehta, H Elmarakeby, B Jiang, F Dietlein, et al.
bioRxiv, 2021.09. 14.460365, 2021
12021
Applying Self-Supervised Learning to Medicine: Review of the State of the Art and Medical Implementations
A Chowdhury, J Rosenthal, J Waring, R Umeton
Informatics 8 (3, Machine Learning in Healthcare), 59, 2021
622021
Pancreatic cancer risk predicted from disease trajectories using deep learning
D Placido, B Yuan, JX Hu, AD Haue, C Yuan, J Kim, R Umeton, G Antell, et al.
bioRxiv, 2021
132021
Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum
KL Penney, S Tyekucheva, J Rosenthal, H El Fandy, R Carelli, et al.
Molecular Cancer Research [machine learning; metabolomics; prostate cancer …, 2021
302021
Enrichment analysis of GWAS data in autoimmunity delineates the multiple sclerosis-Epstein Barr virus association
R Mechelli, R Umeton, V Rinaldi, G Bellucci, R Bigi, DF Angelini, et al.
BioRxiv, 2021.06. 06.447253, 2021
2021
Identification and management of pathogenic mutations in BRCA1, BRCA2, and PALB2 in a tumor-only genomic testing program.
BL Bychkovsky, T Li, J Sotelo, N Tayob, J Mercado, I Gomy, et al.
Journal of Clinical Oncology 39 (15_suppl), 10528-10528, 2021
12021
Let us know how access to this document benefits you.
R Umeton
2021
GWAS-associated Variants, Non-genetic Factors and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis
R Umeton, G Bellucci, R Bigi, S Romano, MC Buscarinu, R Reniè, et al.
bioRxiv, 2021.03. 12.434773, 2021
2021
Book - Machine Learning, Optimization, and Data Science (6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020, Revised Selected Papers, Part I)
G Nicosia, V Ojha, L Malfa E., G Jansen, V Sciacca, P Pardalos, et al.
Book - Springer 12565 (http://doi.org/10.1007/978-3-030-64583-0), 1-740, 2021
2*2021
Book - Machine Learning, Optimization, and Data Science (6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020, Revised Selected Papers, Part II)
G Nicosia, V Ojha, L Malfa E., G Jansen, V Sciacca, P Pardalos, et al.
Book - Springer 12566 (http://doi.org/10.1007/978-3-030-64580-9), 1-666, 2021
2021
Triple-negative breast cancer
M Huang, J O'Shaughnessy, J Zhao, A Haiderali, J Cortés, SD Ramsey, et al.
42021
Using Distributionally Robust Optimization to improve robustness in cancer pathology
SN Hari, E Van Allen, J Nyman, N Mehta, B Jiang, H Elmarakeby, et al.
NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and …, 2021
2021
Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML toolkit for computational pathology
J Rosenthal, R Carelli, M Omar, D Brundage, E Halbert, J Nyman, SN Hari, et al.
biorxiv, 10.1101/2021.10.21.46521, 2021
2021
GWAS-associated variants, non-genetic factors, and transient transcriptome in multiple sclerosis etiopathogenesis: A colocalization analysis
G Bellucci, R Umeton, R Bigi, S Romano, MC Buscarinu, R Reniè, et al.
Journal of the Neurological Sciences 429, 2021
2021
Associations Between Family Member Involvement and Outcomes of Patients Admitted to the Intensive Care Unit: Retrospective Cohort Study
T Fowler Gray, A Kwok, KM Do, S Zeng, ET Moseley, YM Dbeis, et al.
Journal of Medical Internet Research, 33921, 2021
2021
A very high tumor mutational burden (TMB) is associated with improved efficacy of PD-(L) 1 inhibition across different PD-L1 expression subgroups and a distinct immunophenotype …
B Ricciuti, KC Arbour, NR Mahadevan, JV Alessi, J Lindsay, R Umeton, et al.
Cancer Research 81 (13), 490, 2021
2021
Circulating hsa-miR-323b-3p in Huntington's Disease: A Pilot Study
M Ferraldeschi, S Romano, S Giglio, C Romano, E Morena, R Mechelli, et al.
Frontiers in neurology 12, 492, 2021
112021
Book - Machine Learning, Optimization, and Data Science (5th International Conference, LOD 2019, Siena, Italy, September 10–13, 2019, Proceedings)
G Nicosia, P Pardalos, R Umeton, G Giuffrida, V Sciacca
Book - Springer 11943 (http://doi.org/10.1007/978-3-030-37599-7), 1-772, 2020
2*2020
Automated Machine Learning: Review of the State-of-the-Art and Opportunities for Healthcare
J Waring, C Lindvall, R Umeton
Artificial Intelligence in Medicine, 101822, 2020
6802020
246 Clinicopathologic and genomic correlates of tumor mutational burden and its impact on PD-(L) 1 inhibition efficacy in non-small cell lung cancer according to different PD …
B Ricciuti, N Mahadevan, R Umeton, J Alessi, A Polio, N Vokes, et al.
Journal for ImmunoTherapy of Cancer 8 (Suppl 3), 2020
12020
Clinical pan-cancer assessment of mismatch repair deficiency using tumor-only, targeted next-generation sequencing
A Albayrak, AC Garrido-Castro, M Giannakis, R Umeton, MD Manam, et al.
JCO Precision Oncology 4, 1084-1097, 2020
142020
Genomic correlates of PD-L1 expression are associated with response to immunotherapy in non-small cell lung cancer
LF Spurr, G Lamberti, YY Li, B Ricciuti, G Recondo, R Umeton, LM Sholl, et al.
Cancer Research 80 (16), 5668, 2020
2020
Impact of DNA damage response and repair (DDR) gene mutations on efficacy of PD-(L) 1 immune checkpoint inhibition in non–small cell lung cancer
B Ricciuti, G Recondo, LF Spurr, YY Li, G Lamberti, D Venkatraman, et al.
Clinical cancer research 26 (15), 4135-4142, 2020
1192020
Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-L1) expression in nonsquamous non-small-cell lung cancer
G Lamberti, LF Spurr, Y Li, B Ricciuti, G Recondo, R Umeton, M Nishino, et al.
Annals of Oncology 31 (6), 807-814, 2020
892020
Molecular Mechanisms of Acquired Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14–Mutant NSCLC
G Recondo, M Bahcall, LF Spurr, J Che, B Ricciuti, GC Leonardi, YC Lo, et al.
Clinical Cancer Research 26 (11), 2615, 2020
1532020
Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer
R Barroso-Sousa, TE Keenan, S Pernas, P Exman, E Jain, et al.
Clinical Cancer Research 26 (11), 2565, 2020
1482020
Reworking GWAS data to understand the role of nongenetic factors in MS etiopathogenesis
R Mechelli, R Umeton, G Manfrè, S Romano, MC Buscarinu, V Rinaldi, et al.
Genes 11 (1), 97, 2020
62020
Correction to: Machine Learning, Optimization, and Data Science
G Nicosia, V Ojha, E La Malfa, G Jansen, V Sciacca, P Pardalos, et al.
Machine Learning, Optimization, and Data Science: 6th International …, 2020
2020
PDF - Operationalizing Artificial Intelligence: Lessons Learned at Dana-Farber Cancer Institute
J Methot, G Antell, R Umeton
American Medical Informatics Association 2020 (dx.doi.org/10.6084/m9 …, 2020
2020
Machine Learning, Optimization, and Data Science
G Nicosia, V Ojha, E La Malfa, G Jansen, V Sciacca, P Pardalos, et al.
Springer Nature, 2020
2020
Book - Machine Learning, Optimization, and Data Science (4th International Conference, LOD 2018, Volterra, Italy, September 13-16, 2018, Revised Selected Papers)
G Nicosia, P Pardalos, G Giuffrida, R Umeton, V Sciacca
Book - Springer 11331 (http://doi.org/10.1007/978-3-030-13709-0), 1-584, 2019
3*2019
Clinicopathological and genomic correlates of PD-L1 expression in nonsquamous non-small cell lung cancer
G Lamberti, L Spurr, Y Li, B Ricciuti, G Recondo, R Umeton, A Cherniak, et al.
Journal for Immunotherapy of Cancer 7, 2019
12019
Use of targeted next generation sequencing to characterize tumor mutational burden and efficacy of immune checkpoint inhibition in small cell lung cancer
B Ricciuti, S Kravets, SE Dahlberg, R Umeton, A Albayrak, SJ Subegdjo, et al.
Journal for ImmunoTherapy of Cancer 7 (1), 87, 2019
802019
Harmonization of tumor mutational burden quantification and association with response to immune checkpoint blockade in non–small-cell lung cancer
NI Vokes, D Liu, B Ricciuti, E Jimenez-Aguilar, H Rizvi, F Dietlein, MX He, et al.
JCO precision oncology 3, 1-12, 2019
1052019
Comparison of Clinicopathological and Genomic Characteristics Between NSCLCs with a PD-L1 Tumor Proportion Score of≥ 90% vs< 1%
G Lamberti, Y Li, L Spurr, B Ricciuti, G Recondo, R Umeton, L Sholl, et al.
Journal of Thoracic Oncology 14 (10), S720, 2019
22019
Mechanisms of Resistance to MET Tyrosine Kinase Inhibitors in Patients with MET Exon 14 Mutant Non-Small Cell Lung Cancer
G Recondo, M Bahcall, L Sholl, G Leonardi, B Ricciuti, T Nguyen, et al.
Journal of Thoracic Oncology 14 (10), S285, 2019
42019
DNA Damage Response Gene Alterations Are Associated with High Tumor Mutational Burden and Clinical Benefit from PD-1 Axis Inhibition in NSCLC
B Ricciuti, M Cheng, G Recondo, R Umeton, M Nishino, L Sholl, M Awad
Journal of Thoracic Oncology 14 (10), S439, 2019
32019
Immune-Related Adverse Events and Clinical Outcome to Anti PD-1 Axis Inhibition in SCLC: A Multicenter Retrospective Analysis
B Ricciuti, AR Naqash, B Henick, D Rangachari, J Naidoo, et al.
Journal of Thoracic Oncology 14 (10), S213, 2019
32019
Tumor mutational burden (TMB) is a potential predictor of response to immune checkpoint inhibitors (ICI) in metastatic triple-negative breast cancer (mTNBC)
R Barroso-Sousa, S Tyekucheva, P Exman, R Umeton, FS Hodi, EP Winer, et al.
Mastology 29 (3), 5-5, 2019
2019
Inter-test variability in tumor mutational burden (TMB) quantification and identification of TMB thresholds
N Vokes, EJ Alguilar, R Umeton, A Adeni, L Sholl, M Hellmann, H Rizvi, et al.
Cancer Research 79 (13), 2514, 2019
12019
Impact of KRAS allele subtypes and concurrent genomic alterations on clinical outcomes to programmed death 1 axis blockade in non-small cell lung cancer.
B Ricciuti, G Recondo, R Umeton, M Nishino, LM Sholl, MM Awad
Journal of Clinical Oncology 37, 9082, 2019
52019
DNA damage response gene alterations are associated with high tumor mutational burden and clinical benefit from programmed death 1 axis inhibition in non-small cell lung cancer.
B Ricciuti, ML Cheng, G Recondo, M Nishino, R Umeton, LM Sholl, et al.
Journal of Clinical Oncology 37, 9077, 2019
32019
Significant enrichment of Herpesvirus interactors in GWAS data suggests causal inferences for the association between Epstein Barr virus and multiple sclerosis
R Mechelli, R Umeton, S Srinivasan, A Fornasiero, M Ferraldeschi, et al.
bioRxiv, 624049, 2019
2019
Mutational analysis of 472 urothelial carcinoma across grades and anatomic sites
AH Nassar, R Umeton, J Kim, K Lundgren, L Harshman, EM Van Allen, et al.
Clinical Cancer Research 25 (8), 2458, 2019
1142019
PTEN alterations and tumor mutational burden as potential predictors of resistance or response to immune checkpoint inhibitors in metastatic triple-negative breast cancer
R Barroso-Sousa, S Tyekucheva, S Pernas-Simon, P Exman, E Jain, et al.
Cancer Research 79, P5, 2019
2*2019
Genome-Wide Multiple Sclerosis Association Data and Coagulation
S La Starza, M Ferraldeschi, MC Buscarinu, S Romano, A Fornasiero, et al.
Frontiers in Neurology 10, 95, 2019
102019
Book - Machine Learning, Optimization, and Big Data (Third International Conference, MOD 2017, Volterra, Italy, September 14–17, 2017, Revised Selected Papers)
G Nicosia, P Pardalos, G Giuffrida, R Umeton
Book - Springer 10710 (http://doi.org/10.1007/978-3-319-72926-8), 1-621, 2018
1*2018
Mismatch repair deficiency in high-grade meningioma: a rare but recurrent event associated with dramatic immune activation and clinical response to PD-1 blockade
IF Dunn, Z Du, M Touat, MB Sisti, PY Wen, R Umeton, AM Dubuc, et al.
JCO precision oncology 2, 1-12, 2018
522018
Use of Tumor-Only Next Generation Sequencing to Identify Clinicopathologic and Genomic Correlates of Tumor Mutational Burden and Immunotherapy Response in Non-Small Cell Lung …
M Awad, NR Mahadevan, A Polio, EJ Aguilar, NI Vokes, B Ricciuti, et al.
Preprints with The Lancet, 2018
2018
Investigating the gene-environment interaction in multiple sclerosis through a" candidate-interactome" approach
G Pellicciari, R Umeton, S Srinivasan, R Magliozzi, F Cinthia, C Romano, et al.
MULTIPLE SCLEROSIS JOURNAL 24, 192-193, 2018
2018
Multiple sclerosis: Epstein-Barr virus variants' role to understand the etiology
E Morena, R Renie, C Romano, G Pellicciari, G Pesole, G Manfre, et al.
MULTIPLE SCLEROSIS JOURNAL 24, 397-398, 2018
2018
Efficacy and Genomic Correlates of Response to Anti-PD1/PD-L1 Blockade in Non-Small Cell Lung Cancers Harboring Targetable Oncogenes
N Vokes, EJ Alguilar, A Adeni, R Umeton, L Sholl, H Rizvi, M Hellmann, et al.
Journal of Thoracic Oncology 13 (10), S422, 2018
92018
PD-L1 Expression, Tumor Mutational Burden, and Response to Immunotherapy in Patients with MET exon 14 Altered Lung Cancers
JK Sabari, GC Leonardi, CA Shu, R Umeton, J Montecalvo, A Ni, R Chen, et al.
Annals of Oncology, 2018
2702018
Comprehensive genomic characterization of urothelial carcinomas
A Nassar, R Umeton, K Lundgren, LC Harshman, EM Van Allen, et al.
Journal of Clinical Oncology 36 (15), 4527, 2018
2018
Optimization and Data Science
G Nicosia, P Pardalos, G Giuffrida, R Umeton, V Sciacca
2018
Fractal analysis of retinal vascular morphology in multiple sclerosis
M Cavallari, D Kimbrough, C Stamile, R Umeton, T Chitnis, C Guttmann
MULTIPLE SCLEROSIS JOURNAL 24, 370, 2018
12018
Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients
V Annibali, R Umeton, A Palermo, M Severa, MP Etna, S Giglio, et al.
Journal of NeuroImmunology 324, 165, 2018
112018
Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis
MC Buscarinu, S Romano, R Mechelli, RP Umeton, M Ferraldeschi, et al.
Neurotherapeutics, 1-7, 2018
732018
Somatic mutations in CDH1 and CTNNB1 in primary carcinomas at 13 anatomic sites
EL Busch, JL Hornick, R Umeton, A Albayrak, NI Lindeman, et al.
Oncotarget 8 (49), 85680, 2017
192017
Different environmental stimuli may activate common biological processes potentially involved in multiple sclerosis
R Mechelli, R Umeton, R Renie, G Ristori, M Salvetti
MULTIPLE SCLEROSIS JOURNAL 23, 210, 2017
2017
The gut microbiome in active and stable relapsing multiple sclerosis
E Eleftheriou, RP Umeton, R Umeton, S Nedelcu, AL Contreras, L Hall, et al.
MULTIPLE SCLEROSIS JOURNAL 23, 518, 2017
2017
A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials
C Eleuteri, S Olla, C Veroni, R Umeton, R Mechelli, S Romano, et al.
Scientific Reports 7, 45780, 2017
392017
Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: A pilot study
MC Buscarinu, B Cerasoli, V Annibali, C Policano, L Lionetto, M Capi, et al.
Multiple Sclerosis Journal 23 (3), 442-446, 2017
1532017
Association of Rs7961894 with Mean Platelet Volume in Patients with Acute Ischemic Stroke
M Miller, N Henninger, R Umeton, A Slowik
Stroke 48, ATP202, 2017
2017
Gene-environment interaction study in multiple sclerosis using a" candidate-interactome" approach
R Mechelli, R Umeton, Imsgc-Wtccc, G Ristori, M Salvetti
MULTIPLE SCLEROSIS JOURNAL 22, 191-192, 2016
2016
GENE-ENVIRONMENT INTERACTION STUDY IN MULTIPLE SCLEROSIS
R Mechelli, R Umeton, I WTCCC22, G Ristori, M Salvetti
2016
Epstein barr virus genotipic variants and uses thereof as risk predictors, biomarkers and therapeutic targets in multiple sclerosis
G Ristori, R Mechelli, M Salvetti, C Policano, R Umeton
US Patent App. 14/782,556, 2016
2016
Portable medical device and method for quantitative retinal image analysis through a smartphone
C Stamile, R Umeton, M Cavallari, F Calimeri, F Orzi
US Patent 20150320313A1, 2016
82016
IFN-β and multiple sclerosis: from etiology to therapy and back
V Annibali, R Mechelli, S Romano, MC Buscarinu, A Fornasiero, et al.
Cytokine & growth factor reviews 26 (2), 221-228, 2015
512015
Research Article Novel Method for Automated Analysis of Retinal Images: Results in Subjects with Hypertensive Retinopathy and CADASIL
M Cavallari, C Stamile, R Umeton, F Calimeri, F Orzi
2015
Epstein-Barr virus genetic variants are associated with multiple sclerosis.
R Mechelli, C Manzari, C Policano, A Annese, E Picardi, R Umeton, et al.
Neurology 31 (84), 1362-8, 2015
722015
Novel method for automated analysis of retinal images: results in subjects with hypertensive retinopathy and CADASIL
M Cavallari, C Stamile, R Umeton, F Calimeri, F Orzi
BioMed research international 2015 (1), 752957, 2015
432015
B cell IRF1 pathway is dysregulated in multiple sclerosis
V Annibali, R Umeton, A Palermo, MC Buscarinu, C Policano, R Mechelli, et al.
Journal of Neuroimmunology 275 (1), 1, 2014
2014
Noise in multiple sclerosis: unwanted and necessary
I Bordi, VAG Ricigliano, R Umeton, G Ristori, F Grassi, A Crisanti, et al.
Annals of clinical and translational neurology 1 (7), 502-511, 2014
112014
Dispositivo medico portatile e metodo per l’acqusizione di immagini della retina e esecuzione di analisi quantitative sull’immagi-ne della retina
C Stamile, R Umeton, M Cavallari, F Calimeri, F Orzi
2014
Drug repositioning and computational analysis for myelin disease regenerative therapies
C Eleuteri, C Veroni, M Floris, S Olla, R Umeton, G Ristori, V Annibali, et al.
MULTIPLE SCLEROSIS JOURNAL 19 (11), 163-163, 2013
2013
Contribution of genome-wide association studies to scientific research: a pragmatic approach to evaluate their impact
VAG Ricigliano, R Umeton, L Germinario, E Alma, M Briani, N Di Segni, et al.
PLoS One 8 (8), e71198, 2013
92013
In silico modeling of shear-stress-induced nitric oxide production in endothelial cells through systems biology
A Koo, D Nordsletten, R Umeton, et al.
Biophysical journal 104 (10), 2295-2306, 2013
522013
Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis
G Carapezza, R Umeton, J Costanza, C Angione, G Stracquadanio, et al.
ACS synthetic biology 2 (5), 274-288, 2013
132013
A “candidate-interactome” aggregate analysis of genome-wide association data in multiple sclerosis
R Mechelli, R Umeton, C Policano, V Annibali, G Coarelli, VAG Ricigliano, et al.
PLoS One 8 (5), e63300, 2013
362013
Automated analysis of retinal photographs: results in subjects with hypertensive retinopathy and CADASIL
M Cavallari, C Stamile, R Umeton, F Orzi
NEUROLOGY 80, 2013
12013
Automated Analysis of Retinal Photographs: Results in Subjects with Hypertensive Retinopathy and CADASIL (IN4-1.001)
M Cavallari, C Stamile, R Umeton, F Orzi
Neurology 80 (7_supplement), IN4-1.001-IN4-1.001, 2013
2013
Research Article A Mechanistic, Stochastic Model Helps Understand Multiple Sclerosis Course and Pathogenesis
I Bordi, R Umeton, VAG Ricigliano, V Annibali, R Mechelli, G Ristori, et al.
2013
Varianti genotipiche del virus di Epstein Barr e loro usi come possibili predittori di rischio, biomarcatori e target terapeutici nella sclerosi multipla
R Mechelli, C Policano, R Umeton, M Salvetti, G Ristori
ITA, 2013
2013
A ‘‘Candidate-Interactome’’Aggregate Analysis of Genome-Wide Association Data
R Mechelli, R Umeton, C Policano, V Annibali, G Coarelli
2013
A mechanistic, stochastic model helps understand multiple sclerosis course and pathogenesis
I Bordi, R Umeton, VAG Ricigliano, V Annibali, R Mechelli, G Ristori, et al.
International Journal of Genomics 2013 (1), 910321, 2013
312013
OREMPdb: a semantic dictionary of computational pathway models
R Umeton, G Nicosia, CF Dewey
BMC bioinformatics 13, 1-9, 2012
82012
Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood
R Calabrese, M Zampieri, R Mechelli, V Annibali, T Guastafierro, et al.
Multiple Sclerosis Journal 18 (3), 299-304, 2012
872012
Characterization of Epstein-Barr virus genotypes in multiple sclerosis by 454 deep sequencing
C Manzari, E Picardi, R Mechelli, C Policano, R Umeton, A Paluscio, et al.
2012 Human Microbiome International Conference–Paris, France, March 19-21 2012, 2012
2012
Characterization of Epstein-Barr virus genotypes in multiple sclerosis
C Policano, R Mechelli, C Manzari, E Picardi, V Annibali, R Umeton, et al.
-, 2012
2012
metaDesign: Bacterial Strain Design Automation Software
C Jole, C Giovanni, A Claudio, U Renato, L Pietro, G Nicosia
IWBDA 2012, 2012
2012
Efficient Behavior of Photosynthetic Organelles via Pareto Optimality, Identifiability and Sensitivity Analysis-Appendix Supplementary Information
G Carapezza, R Umeton, J Costanza, C Angione, G Stracquadanio, et al.
2012
Modeling and Optimization of Efficient Photosynthetic Organelles-Appendix Supplementary Information
G Carapezza, R Umeton, J Costanza, C Angione, G Stracquadanio, et al.
2012
New enhancers of endogenous remyelination: an extensive in vitro and ex vivo screening
C Eleuteri, C Veroni, R Umeton, V Annibali, G Ristori, M Salvetti, C Agresti
MULTIPLE SCLEROSIS, 2012
22012
Transciptome of B lymphocytes in multiple sclerosis
V Annibali, R Umeton, A Annese, A Palermo, R Mechelli, C Policano, et al.
JOURNAL OF NEUROIMMUNOLOGY 253, 9-9, 2012
2012
Identification of sensitive enzymes in the photosynthetic carbon metabolism
R Umeton, G Stracquadanio, A Papini, J Costanza, P Lio, G Nicosia
Advances in Systems Biology, 441-459, 2012
52012
Design of robust metabolic pathways
R Umeton, G Stracquadanio, A Sorathiya, P Liò, A Papini, G Nicosia
Proceedings of the Design Automation Conference, 747-752, 2011
172011
Design and implementation of a workflow-based system for the analysis of HumanExon and microRNA array chip data
A Palermo, V Annibali, A Annese, G Ristori, M Salvetti, F Calimeri, et al.
ICARIS, 2011
2011
OREMPdb: a Semantic Dictionary of Runnable Biological Circuits
R Umeton, G Nicosia, CF Dewey Jr
BITS, 2011
2011
Semantic Queries for Biomedical Pathways
R Umeton, G Nicosia, CF Dewey Jr
Workshop on Process Algebra and Stochastically Timed Activities (PASTA/Bio …, 2011
2011
Multi-scale Mathematical Modeling to Support Drug Development
DA Nordsletten, BY Yankama, R Umeton, et al.
IEEE Transactions on Biomedical Engineering, 2011
162011
Large scale agent-based modeling of the humoral and cellular immune response
G Stracquadanio, R Umeton, J Costanza, V Annibali, R Mechelli, et al.
International Conference on Artificial Immune Systems (ICARIS 2011), 15-29, 2011
32011
Optimization and Ontology for Computational Systems Biology
R Umeton
2010
Analysis and optimization of c3 photosynthetic carbon metabolism
G Stracquadanio, R Umeton, A Papini, P Lio, G Nicosia
IEEE International Conference on BioInformatics and BioEngineering, 44-51, 2010
212010
A Cross-Format Framework for Consistent Information Integration among Molecular Pathways and Ontologies
R Umeton, B Yankama, G Nicosia, CF Dewey
World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore, 1595-1598, 2010
32010
Key Enzymes for the optimization of CO2 uptake and nitrogen consumption in the C3 photosynthetic carbon metabolism
A Papini, G Nicosia, G Stracquadanio, P Lio, R Umeton
Journal of Biotechnology, 525, 2010
32010
OREMP: Ontology Reasoning Engine for Molecular Pathways
R Umeton, B Yankama, G Nicosia, CF Dewey Jr
International Workshop on Ontology Repositories and Editors for the Semantic …, 2010
22010
Visita Massachusetts Institute of Technology (MIT)
R Umeton, M Salvetti
USA, 2009
2009
Highway traffic simulator based on cellular automata model: preliminary results and congestion pricing analysis
S DI GREGORIO, R Umeton, A Bicocchi, A Evangelisti, MA Gonzales
European Modeling and Simulation Symposium, EMSS 2008, 17-19 September 2008 …, 2008
12008
Highway traffic model based on cellular automata: Preliminary simulation results with congestion pricing considerations
S Di Gregorio, R Umeton, A Bicocchi, A Evangelisti, MC Gonzalez
European Modeling and Simulation Symposium, EMSS 2008, 17-19 September 2008 …, 2008
32008
A Cellular Automata Model for Highway Traffic with Preliminary Results
S Di Gregorio, R Umeton, A Bicocchi, A Evangelisti
Artificial Life and Evolutionary Computation: Proceedings of Wivace 2008, 235, 2008
12008
Admissible Method for Improved Genetic Search in Cellular Automata Model Hyperparameter Space (AMMISCA): a Strategy in Genetic Calibration with Preliminary Results
R Umeton, S Di Gregorio
Artificial Life and Evolutionary Computation: Proceedings of Wivace 2008, 99, 2008
1*2008
Introduction of More Physical Features in the Cellular Automata Model for Lava Flows SCIARA: Preliminary Results Regarding the Viscosity
MV Avolio, GM Crisci, S Di Gregorio, R Rongo, R Umeton
Geophysical Research Abstracts / Proceedings of Asia Oceania Geosciences …, 2007
1*2007